医疗器械网(120med.com)欢迎您!

| 登录 注册
网站首页-资讯-专题- 微头条-话题-产品库- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-直播- 视频-课程

技术中心

当前位置:医疗器械网> 技术中心>动力电池应用 | 超快充(XFC)要求及开发策略

动力电池应用 | 超快充(XFC)要求及开发策略

来源:阿美特克商贸(上海)有限公司      分类:技术参数 2024-04-23 10:30:12 78阅读次数

点击蓝字 关注我们

近来,尽管动力电池快充技术在快速发展,但充电时间,效率和寿命焦虑依然是全球范围内使用电动车的主要焦虑。锂离子电池以高能量密度和长寿命成为电动车的主要能源。当前,有几种方式来控制快充条件下的电池健康状态。本文提出了充电协议的清晰分类,将快充协议分为功率管理协议,依赖于对电流,电压和电池温度控制的热管理协议,以及依赖于锂离子电池材料物理修饰和化学结构的材料层面的充电协议。并分析了每种快充协议的要求,优势和劣势



Fig 1 电动汽车(EV)研究路线图


锂离子电池不同层级对快充的影响



材料-电极-电池层级对快充的影响


锂离子电池快充协议

快充协议的目的是降低充电时间,优化效率和循环寿命,降低充电损失。消除大倍率充电和深度放电所导致的活性物质损失,电极表面的SEI膜重整,内部温度变化和减小容量损失。



Fig 2 锂离子电池主要快充充电协议类型



Fig 3主要快充协议的优势及劣势


 恒电流恒电位充电协议

CC-CV 作为传统的充电协议,其示意图如Fig 4 所示,即恒电流充到指定电位后,在截止电压下持续恒压充电至电流降低为0.1C 或0.01 C。CC-CV的主要问题是充电时间较长,且CV恒压过程会导致电池内部发生化学反应。



Fig 4 恒电流-恒电位充电(CC-CV)示意图


多步恒电流(MCC) 充电协议种类


Fig 5 多步恒电流(MCC) 充电协议种类

(a) 充电电流多步变换

(b) 混合技术(HT) 

(c) 条件随机变化技术 (CRT)

(d) 多步恒电流超快充技术 (ML MCC-CV)


MCC充电协议是通过多步的变换的恒电流进行充电,作为目前最具潜力的超快充技术,有利于缩短充电时间,同时降低电池的衰减和能量损失,并提高效率,降低产生的热,避免析锂和过充等,但是,MCC充电协议需要对电池内部的电路进行全面准确评估后才能有效进行开发。因此,MCC的开发需要直流和交流阻抗技术组合使用。


热管理协议


Fig 6 热管理协议

恒温-恒压充电协议示意图


热管理充电协议依赖于对环境温度和电池温度的控制,温度作为影响电池老化非常重要的因素, 一种新的快充协议基于恒温很恒压(CT-CV) 如Fig 所示。CTCV基于施加2C电流,然后电流指数衰减至1C ,当电压到达4.2V时,电流开始衰减至0.1C。为了维持温度恒定,采用PID进行温度控制。


脉冲电流充电协议(PCC)

 Fig 7 脉冲充电电流示意图



Fig 8 脉冲电流充电协议

(a) 标准协议-固定占空比

(b) 标准协议-变化占空比

(c) 标准协议-衰减电流

(d) 标准协议高-低电流变化

(e) 不同的电压脉冲


PCC 协议依赖于控制负载的循环,频率和充电脉冲的幅值等,PCC有利于缩短充电时间,低温条件下加热电池,抑制锂析出,增加功率转换,有利于消除浓差极化。缺点是控制器要求极其复杂,难度很高。


结论

经过以上分析,功率控制协议,由于充电时间短,发热量低,效率高,避免锂析出等优势,成为目前锂离子电池快充最具潜力的方法之一,由于其波形的复杂性,对于温度的监测,析锂的有效评价等以及锂离子电池内部等效电路的全面分析,对于所使用的开发设备提出巨大挑战。多步电流法及脉冲电流快充协议,测试设备需要具备以下能力。




参考文献


1. A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by Lithium-Ion Battery Systems,

Future Transp. 2022, 2, 281–299.https://doi.org/10.3390/

futuretransp2010015

2. Detection of Lithium Plating in Li-Ion Cell Anodes Using Realistic Automotive Fast-Charge Profiles, Batteries 2021, 7, 46

3. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects, Adv. Energy Mater.2021, 11, 2101126, DOI: 10.1002/aenm.202101126


免责申明
公众号所发布的内容(含图片,数据,文字等)来源于文章原创作者或者互联网转载等,目的在于传递更多应用信息用于分享,参考和交流等。原文章版权,数据,图片等归原作者或出版机构所有,本公众号仅对原文部分内容作了有限解读和整理,不负有任何法律审查义务,也不承担任何法律责任。如对原文内容有任何疑问,请联系原创作者或相应出版机构。

点击“阅读原文” 访问官方网站


扫二维码


关注我们


关于普林斯顿输力强

普林斯顿输力强是阿美特克集团在美国生产科学仪器的子公司–阿美特克科学仪器部,旗下拥有Princeton Applied Research(PAR)普林斯顿应用研究,Solartron Analytical输力强分析,Signal Recovery三个品牌。

01

能源材料研究


各类型金属离子电池,燃料电池,超级电容器,锂硫电池,金属空气电池,太阳能电池等界面反应,效率,容量,充放电倍率,循环寿命,失效机制,安全性,一致性,电池管理等方面研究,以及动力电池全生命周期快速分级梯次利用评估

02

电化学腐蚀研究


如金属、合金、涂层等复合材料等在大气,溶液,土壤和混泥土等特定环境中的宏观及微观腐蚀速率、耐腐蚀行为和老化失效等机理分析

03

光-电催化研究


如光电解水制氢、二氧化碳还原等催化反应过程中,多相界面的电子转移速率,过电势,电化学活性面积,转换效率和失活状态等表征

04

材料电特性研究


如导电陶瓷,介电聚合物,质子导体,有机半导体OLED等材料的质子电导率,介电常数,介电损耗,电子能级分布轨道(HOMO和LOMO),载流子浓度和态密度分布(DoS)等参数测定


发现分享了吗,戳我看看吧


标签:

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《医疗器械网服务协议》

推荐阅读

版权与免责声明

①本文由医疗器械网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表医疗器械网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:医疗器械网"的所有作品,版权均属于医疗器械网,转载时须经本网同意,并请注明医疗器械网(www.120med.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

关于作者

作者简介:[详细]
最近更新:2023-09-18 16:20:36
关注 私信
更多

最新话题

最新文章

作者榜