【热点应用】看GCI 技术如何攻克小分子药物实验难题
本文由医药行业应用专家秦怡供稿
小分子药物研发是一场科学接力赛,从靶点发现到化合物筛选和结构优化,再到临床试验,每一步都充满挑战。随着人工智能技术的不断发展,计算机辅助药物设计为科学家插上一双翅膀,助力科学家跑赢这场激烈地接力赛。科学家们借助分子动力学模拟、虚拟筛选等技术可以更加全面地了解药物分子与靶点蛋白的结合模式,从数以万计的化合物库中迅速锁定最有潜力的候选物,高效、精准地设计出真正有效、安全的药物。
虽然计算机辅助药物设计技术大幅提高了小分子药物开发的效率和精准性,但设计出的新药仍需实验技术的最终确认。
光栅耦合干涉技术(Grating-coupled interferometry, GCI)是一种基于表面的非标记分子互作技术,3 mm超长检测区域赋予了GCI技术超高的灵敏度,即使是低偶联、低活性及大分子量配体的测试也能获得高质量数据;双重进样口的设计将切换速度提升至150 ms,可敏锐捕捉解离速率为10 s-1的瞬态反应。正是这种无与伦比的切换速度与灵敏度,使GCI技术成为小分子药物与靶点结合确认环节的黄金拍档,确保每一次的结合都能被精确无误地捕捉和验证。
应用实例:
GCI技术推动转移性结直肠癌药物发现
转移性结直肠癌 (mCRC) 是导致癌症相关死亡的主要原因之一,但目前仍缺乏有效的治疗药物。岩藻糖基转移酶8(FUT8)在结直肠癌在内的大多数恶性癌症中过表达,为潜在的治疗靶点。
2023年8月3日,苏州大学汪维鹏教授和李环球副教授团队在Cell Death Disease上发表题为 “FDW028, a novel FUT8 inhibitor, impels lysosomal proteolysis of B7-H3 via chaperone-mediated autophagy pathway and exhibits potent efficacy against metastatic colorectal cancer” 的研究性文章,该研究开发了一种强效且具有高度选择性的小分子 FUT8 抑制剂 FDW028,该抑制剂能显著抑制FUT8介导的核心岩藻糖修饰,促进免疫检查点分子B7-H3经分子伴侣介导的自噬(CMA)溶酶体途径降解,显著延长转移性结直肠癌(mCRC)小鼠生存期。
图1 FDW028 药理作用机理
目前,通过常规策略开发的小分子抑制剂,面临生物利用度低、选择性差等问题。因此,研究者借助分子动力学(MD)模拟、虚拟筛选等技术,解开了FUT8 与小分子结合的关键残基,鉴定出FDW028有望成为FUT8 的新型抑制剂。最终,研究者利用小分子开发黄金搭档——GCI,将FUT8通过氨基偶联于PCP芯片表面,FDW028以1:2进行稀释流过芯片表面(8个浓度,最高浓度为100 μM),运行缓冲液为含3%DMSO的PBS-P缓冲液。通过Kinetics测定出FDW028和FUT8亲和力为5.486 μM,证实了 FDW028 与 FUT8 的完美结合,进一步验证了FDW028作为酶抑制剂的可行性,为后续动物实验抗肿瘤活性的评估奠定坚实的基础。
图2 FUT8和FDW028结合动力学
GCI技术让小分子无处可藏
在小分子结合实验中,特别是在分析大分子量药物靶标与小分子之间的相互作用时,灵敏度是实现精准分析的核心要素。
传统技术面对悬殊较大的分子互作分析时,往往需通过提升表面配体的密度来实现Rmax(最大响应值)的最优化,以确保结果的可靠性。然而,高分辨率的GCI技术可以精准捕获较低配体密度下的动力学数据,为研究分子间相互作用提供了新的视角和更宽的动态范围。
基于GCI技术我们分析了一对分子量为297 Da的小分子与分子量为110 kDa的目标蛋白(由诺华公司提供),分子量比率>350:1,这对于传统的无标记互作技术来说是一个巨大挑战。将生物素化的目标蛋白偶联在PCH-STA芯片表面(表面衍生链霉亲和素),分析物进行1:3稀释(9个浓度,最高浓度为10 μM),运行缓冲液为20 mM Hepes、300 mM NaCl、1 mM DTT、2%DMSO,最终通过校正及拟合以获得结合动力学相关信息。
图3 297 Da小分子与110 kDa的目标蛋白的结合动力学
借助GCI技术卓越的灵敏度和信噪比,即使在配体密度远未达到表面饱和的情况下(<1 pg/mm2,相当于1 RU),也能对分子量相差悬殊的相互作用进行可靠测试。这使我们能够获取具有清晰的浓度依赖性和高信噪比的优质数据。
GCI技术完美攻克小分子结合实验难点
小分子结合实验难点 | GCI技术优势应对 |
小分子的分子量极小,测试仪器需要具备极高的灵敏度 | 3 mm超长检测区域带来卓越的检测灵敏度,检测分子量无下限 |
小分子的解离速率快,测试仪器需具有快速捕捉解离过程的能力 | 150 ms液流切换速度,完美捕获高达10 s-1解离速率 |
小分子的溶解性较差,需要DMSO助溶 | 可耐受高浓度DMSO,waveRAPID全新动力学无需溶剂校正,轻松排除DMSO干扰 |
参考文献:
[1] Wang, M., Zhang, Z., Chen, M. et al. FDW028, a novel FUT8 inhibitor, impels lysosomal proteolysis of B7-H3 via chaperone-mediated autophagy pathway and exhibits potent efficacy against metastatic colorectal cancer. Cell Death Dis 14, 495 (2023). DOI:https://doi.org/10.1038/s41419-023-06027-0.
[2] Creoptix TechNote08 Large Drug Targets.
点击获取应用原文
>>> 关于
的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
全部评论(0条)
推荐阅读
-
- 【热点应用】看GCI 技术如何攻克小分子药物实验难题
- 分子互作WAVEdelta 应用指南
-
- 喷雾冷冻干燥法在粉体吸入剂颗粒设计中的应用
- 粉体吸入剂(Dry Powder Inhaler),是将微粉化药物与载体组成的粉体储存于胶囊或泡囊中,经给药装置随着患者吸气实现药物在呼吸系统沉积(主要在肺部)进而发挥药物治疗作用。粉体吸入制剂对COPD(慢性阻塞性肺病)等呼吸系统疾病及时
-
- 基理动态|贺“2024年大型仪器设备开放共享工作创新培训班”及“2024年河北省高等学校实验室安全培训会”成功举办!
- 相聚长沙\x26amp;石家庄,共话高校实验室信息化管理新思路
-
- 前沿应用|低场核磁共振技术在油泥含油率检测中的应用
- 油泥是一类具有资源回收价值的含油固体废物。低场核磁共振作为一种高新技术,一般在2min内完成对油泥含油率的检测,可以对油泥的油回收水平进行快速评估,以及对油泥处理工艺进行实时评价。
-
- 探微知著:微塑料多维检测技术的发展与应用
- 探微知著:微塑料多维检测技术的发展与应用
-
- 如何通过显微镜解决方案保障电池制造安全高效
- 如何通过显微镜解决方案保障电池制造安全高效
-
- THUNDER样机最新应用展示 | 天津医科大学赵丽课题组
- THUNDER样机最新应用展示 | 天津医科大学赵丽课题组
-
- CEM 微波技术:高效与均匀的完美结合
- 微波是一种低能量的电磁波,其波长在0.001到0.3米的范围内。虽然微波通常与加热剩余食物联系在一起,但它们在其他应用中也发挥着重要作用,比如加热实验室实验。
-
- ASMS 2024 | SCIEX全新ZT Scan DIA质谱采集技术引领生命科学前沿
- ASMS 2024 | SCIEX全新ZT Scan DIA质谱采集技术引领生命科学前沿
-
- 王后之杯丨Bruker ELIO光谱仪在塞夫勒瓷器牛奶杯研究中的应用
- 王后之杯丨Bruker ELIO光谱仪在塞夫勒瓷器牛奶杯研究中的应用
①本文由医疗器械网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表医疗器械网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:医疗器械网"的所有作品,版权均属于医疗器械网,转载时须经本网同意,并请注明医疗器械网(www.120med.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
最新话题
最新文章
- 长光辰英完成数千万A轮融资,建立国际水平的生命科学光学工具平台
- 高考必胜 丨 且踏浪起航,乘梦越山海
- 应用 | 影响喷墨打印质量的重要参数 - 润湿性
- 基理动态|贺“2024年大型仪器设备开放共享工作创新培训班”及“2024年河北省高等学校实验室安全培训会”成功举办!
- 前沿应用|低场核磁共振技术在油泥含油率检测中的应用
- 拼手速 | “破卷出新”FBIF2024食品创新展,免费赠票!
- 收藏!超全的水凝胶3D细胞培养全流程干货,一看就懂~
- Need | “你的”科研产品需求,我们来满足!(内含福利)
- 探微知著:微塑料多维检测技术的发展与应用
- 《REMOTE SENS ENVIRON》--基于S185高光谱数据消除冠层光谱土壤背景影响实现叶片叶绿素含量监测
作者榜
参与评论
登录后参与评论