真理光学团队再下一城 ── 成功研发CF-PALS余弦拟合位相分析法
↑↑↑欢迎订阅【真理光学】官方微信
Zeta电位是液固分散体系中固体颗粒表面与液体的相互作用所引起的类似于带电颗粒的电势。电泳光散射法(ELS)是当前最流行的测量Zeta电位的方法。其原理是(见右图):在分散体系中插入两根两电极,当两电极之间有电压差时,就会在分散体系中形成电场,带电颗粒将向与其极性相反的电极方向移动(电迁移)。
电泳光散射原理示意图
激光束从右到左照射到颗粒上,移动颗粒所散射的光的频率会发生变化,称为“多普勒频移”。再引进一束来自同一光源的参考光,让散射光与参考光叠加,那么散射光的频移就会表现为叠加光束的强度随时间的周期性变化,即所谓的“差拍效应”。提取出差拍的频率,就可计算出电迁移速度及Zeta电位。当前基于ELS原理测量Zeta电位的各种方法,都是围绕如何提取电迁移数据展开的。
频谱分析法(FFT)
首先对叠加光强进行自相关运算,以消除颗粒布朗运动的随机干扰,再对自相关函数进行傅里叶变换(FFT),得到功率谱函数,从而得到频移信息。这种方法要求在一个测量周期内,颗粒电迁移量要达到数个位相变化周期(参考附图,以为一个相位周期),因此不适宜测量较小的电迁移。
位相分析法(Phase analytical light scattering,PALS)
直接分析颗粒电迁移造成的散射光的相位变化,理论上可以测量任意小的电迁移。传统的PALS方法于1990年由J.F.Miller提出。该方法结合锁相放大技术和其独创的AWPD(振幅加权位相差)算法,从叠加光强信号中提取位相差与平均散射光强的乘积。在实际应用中,平均散射光强往往难以稳定,导致Zeta电位的重复性误差只能达到±10mV左右。
余弦拟合位相分析法(CF-PALS)原理示意图
余弦拟合位相分析法(CF-PALS)
本方法由创新提出,其要点是:从叠加光强的自相关函数(随机位相波动已自动消除)出发,通过算法提取其中的余弦变化因子,再用余弦函数模型,拟合出余弦频率。与传统的PALS方法一样,理论上颗粒只要有迁移,不论迁移量多少,都会产生频移或者位相差,都可被测量出来,但又避免了其他参数(如光强)的影响,使测量重复性显著改善(优于±2mV)。
END
汇聚了以张福根博士为首的中国颗粒表征领域顶尖人才。
张福根博士为中国颗粒表征标准化技术委员会副主任委员、曾担任中国颗粒学会副理事长,同时也是天津大学兼职教授和欧美克旗下多家公司的创始人。
此外,曾担任知名英国仪器(中国)总经理20余年的秦和义先生,中国颗粒学会青年理事潘林超博士后和陈进博士以及多位在颗粒学和粉体技术领域具有丰富经验和工作成就的精英人才均在公司就职。
长按识别二维码
关注【】微信
感谢您关注【】公众号
我们热诚地期待为您服务!
科学态度 工匠精神
成就高端颗粒仪器
全部评论(0条)
推荐阅读
-
- 真理光学团队再下一城 ── 成功研发CF-PALS余弦拟合位相分析法
- 真理光学团队成功研发CF-PALS余弦拟合位相分析技术方法全面提升Zeta电位及纳米粒度仪在Zeta电位方面的测试性能
-
- 笑气分析|HS-GCMS法定性分析法庭科学领域中的一氧化二氮
- 本文采用GCMS结合顶空自动进样器,建立一种定性分析法庭科学领域中的一氧化二氮的检测方法。
-
- X射线荧光光谱分析法在铼金属检测中的应用
- X射线荧光光谱分析法在铼金属检测中的应用
-
- ASD | 使用 VIS-NIR 光谱仪通过特征波长和线性判别分析法快速区分有机和非有机叶菜(空心菜、苋菜、生菜和小白菜)
- 本研究采用可见光和近红外光谱 (VIS-NIR) 结合线性判别分析 (LDA) 来快速区分有机和非有机叶菜。
-
- 瞄准前沿赛道,看美迪西如何让寡核苷酸药物研发“提质增效”
- 瞄准前沿赛道,看美迪西如何让寡核苷酸药物研发“提质增效”
-
- 【聚焦光学】想了解光学斩波器相位抖动的特性?看这
- 应用方向:光学斩波器、电学或磁学等方面测试。
-
- 用户文章丨《Pediatr Blood Cancer.》王华教授团队应用超快三维荧光成像取得婴儿血管瘤临床检测标志物研究最新成果
- 重庆医科大学附属儿童医院王华教授团队应用长光辰英核心产品S3000超快三维荧光成像系统在《Pediatric Blood \x26amp; Cancer》期刊上发表了文章
-
- 【白皮书下载】低温光学显微镜的新成像工具
- 【白皮书下载】低温光学显微镜的新成像工具
-
- 名家专栏 | 激光物理系列—解读阿秒超快光学奥秘!
- 首篇激光物理系列专栏特邀上海光机所曾志男研究员,分享阿秒超快光学前沿知识
-
- siskiyou OTX系列光学调整架
- 这些紧凑型光学调整架包含交叉滚柱轴承,可实现X和Y轴调整之间的零串扰。精密轧制的100TPI调节螺钉能够在X和Y轴的整个行程中进行亚微米调节,并具有平滑的调整感。
①本文由医疗器械网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表医疗器械网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:医疗器械网"的所有作品,版权均属于医疗器械网,转载时须经本网同意,并请注明医疗器械网(www.120med.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论